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THEORETICAL STABILITY ANALYSIS OF SKID-ROCKER LANDINGS

OF SPACE VEHICLES

By Robert W. Fralich and Edwin T. Kruszewski

SUMMARY

The governing equations for an arbitrary rigid body sliding on a landing

surface are used to derive a stability criterion which relates the critical

values of initial velocities to the coefficient of friction, center-of-gravity

location, and initial angle of contact. A numerical application of the sta-

bility criterion is made for a vehicle used in an experimental investigation.

INTRODUCTION

A critical problem area in the design of a space vehicle is the landing

system. As conventional landing gears would be quite heavy, new methods for

absorbing landing impacts have to be devised. One technique that contains

little weight chargeable to the landing system is the one referred to as the

skid-rocker landing system. (See, for example, refs. i and 2.) In this sys-

tem the vehicle is permitted to slide on its curved lower surface, and the

friction between this surface and the landing surface is relied on to stop the

vehicle eventually.

An application of this landing concept is discussed in reference i. The

skid-rocker landing characteristics of two proposed space vehicles with dif-

ferent undersurfaces were evaluated experimentally through the use of dynamic-

model testing techniques. The results of this investigation showed that upon

initial contact with the landing surface, the friction force at the contact

point could couple with the inertia forces in such a way as to cause the vehi-

cle to tumble. As such an instability could preclude the use of a specific

configuration, the stability characteristics of a landing vehicle become an

important design consideration.

It would appear to be unrealistic to consider determining experimentally

the stability characteristics of all competing vehicle shapes since the number

of such vehicles is great and each vehicle should be optimized with respect to

variations in the shape of the sliding surface and its weight distribution.

Hence some analytical method of determining the stability of sliding bodies is

needed. The presentation of such an analysis is the purpose of this paper.



This paper is divided into two parts. In the first part the governing
equations for an arbitrary rigid body sliding on a surface are presented, along
with the initial conditions both before and after contact. These nonlinear dif-
ferential equations are solved exactly to obtain closed-form expressions for the
angular position in terms of the initial conditions. These expressions in turn
are used to derive the stability criterion. The second portion of the paper
consists of numerical results obtained by the application of the derived sta-
bility criterion to one of the vehicles used in the experimental investigation
discussed in reference 1. Numerical results showing the influence of coeffi-
cient of friction, sinking speed, and center-of-gravity location on the stability
of the vehicle are discussed. In addition, comparisons between theory and
experiment are presented.

SYMBOLS

b

= b/D

C

= c/D

D

d

F

g

h

ho

I

N

P,Q

t

Vh

Vv

perpendicular distance from body reference line to center of gravity

(fig. i)

distance from base of body reference line to center of gravity,

measured parallel to body reference line (fig. l)

base diameter of vehicle (fig. l)

horizontal distance from contact point to center of gravity (fig. l)

friction force

acceleration due to gravity

vertical distance from contact point to center of gravity (fig. l)

value of h at initial contact

polar mass moment of inertia

normal force

functions of 8 defined in equations (lO) and (ll)

time

horizontal velocity

vertical velocity (positive downward)
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eL

eo
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tO

too

_o, L

rotational velocity

weight of vehicle

coordinate of center of gravity, measured parallel to landing surface

value of x at initial contact

coordinates of undersurface

dummy variables

attitude of vehicle (angle between body reference line and the

perpendicular at the point of contact, fig. i)

angular limit of stability

initial-contact angle

friction coefficient

angular velocity, @

value of _ at initial contact

critical value of _ at initial contact

Dots on symbols denote differentiation with respect to
e.differentiation with respect to

t; primes denote

ANALYSIS

Description of Problem

The problem to be considered is that of the motion of a rigid body sliding

on a landing surface in such a way that continuous contact is maintained between

the body and the landing surface. Only bodies having sliding surfaces with no

reverse curvature are considered; thus only one point is in contact with the

landing surface at any time. The body is assumed to have no roll or yaw upon

contact, so that all forces including the inertia forces are coplanar.

A typical cross section through the center of gravity of such a body is

shown in figure 1. The position of the body at any time t can be given by the

coordinates x and e, where x is the coordinate of the center of gravity

parallel to the landing surface and 8 is the angle between some reference line

in the body and the perpendicular at the point of contact. The position of the
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center of gravity with reference to the point of contact is given by h_ the ver-

tical distance above the surface (positive up), and d, the horizontal distance

from the contact point (positive aft). Note that for a given shape of undersur-

face both h and d are known functions of @ only. The location of the center

of gravity with reference to the base of the body reference line is given by the

distances b and c 3 measured perpendicular and parallel to the body reference

line respectively. The quantities b, c, d, h, and @ are shown in the posi-

tive sense in figure i. Note that the contact angle @ is the negative of the

conventional angle of attack in aerodynamics.

Directionof motion

Londing

surfoce -_

b

r

W
C

F

i

Body reference li

Figure i.- Body with force system.

The forces acting on the body consist of the normal force N, the friction

or drag force F, and the weight of the body W. All forces are positive in the

directions shown in figure i.



Governing Equations

Application of Newton's laws of motion results in the following equations:

F -- _W__ (1)
g

Fh - Na -- I_ (2)

N - W=_ (3)
g

where g is the acceleration due to gravity and I is the mass moment of

inertia about the axis through the center of gravity and perpendicular to the

plane of motion. The dots over the symbols refer to differentiation with respect
to time t.

The drag force F is related to the normal force by the equation

F = pN (4)

where _ is the coefficient of friction_ which is assumed to be constant.

that since h is a function of 8 alone, and 8 is a function of t, the

vertical velocity and acceleration of the center of gravity are given by

and

l_ =h'@

= h"@ 2 + h'e"

where the primes denote differentiation with respect to 8.

Note

(_)

(6)

Angular Motion of Vehicle

Solution of equation (2) after substitution of equation (4) results in an

expression for the normal force in terms of 8:

With this expression for

follows:

N= I _o
d - _h

N and equation (6), equation (3) can be written as

(7)
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Since the quantities d and h are functions of 8 and the quantities I,

W, _, and g are constants, equation (8) constitutes the sole governing equa-

tion for 8. The solution of this equation gives the orientation of the body at
any time. Note that equation (i), which involves the acceleration in the hori-

zontal direction, does not enter into the derivation of equation (8). Hence the

angular motions of the vehicle are entirely uncoupled from the horizontal motion.

The horizontal velocity, however, must at all times be high enough to insure that

the resultant velocity of the contact point is positive so that the friction

force does not change direction.

Before proceeding with the solution of equation (8), it is convenient to
rewrite the equation as

23 +P@2-Q (9)

where both P and Q are functions of 8 defined by

P = 2_"

I + _, (i0)

d - _h g

2w (ii)
Q--- I

d - _h g

Although 8, the angular coordinate, is necessary in obtaining the orienta-

tion of the body, a more important variable for the stability problem is the

angular velocity _ where

and

With equations (12) and (13), equation (9) can be written in terms of _:

: Q (14)

This nonlinear equation (eq. (14)) can be reduced to a linear differential equa-

tion by the transformation
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so that

(16)

Substitution of equations (15) and (16) into equation (14) results in the

following linear differential equation in fl:

fi' +pfl =Q (17)

With the use of the integrating factor

tion (17) can be written as

the solution to equa-

_0 (y_O P(_])dl]

- _(o) : I Q(_)e d_
do

or, in terms of _

_2/oOp(_) d_ CL

_0 0 P(Tl)d_]
-_o2(0) = Q(c_)e da (18)

The value of _2(0)

conditions at t = 0; that is, for O = eo and _O(eo) = _o:

/:o/0 /:P(c_)d_ Oo P(7])dl]

_(o) : %% - Q(_)e d_

is obtained by evaluating equation (18) for the initial

(19)

With the use of equation (19), equation (18) can be solved for _2:

-_oOp(m) dc_ f e° _]) dl]

_02 = e la)o2/O P(
+ Q(_)e (20)

o

Equation (20) can be used to obtain the value of the angular velocity

for any value of e in terms of known initial values of e o and _o- The

angular acceleration can be obtained by differentiating equation (20) with

respect to e and making use of equation (13). Thus
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or

_0 _ _)d_dl
+ a(_)e +

o

@" =- 1--pa)2 + 2_Q (22)2

Equation (22) could also have been obtained directly from equation (9) by noting

the relationship in equation (12).

Stability Criterion

Upon initial contact of the vehicle with the landing surface, friction force

and normal force are generated at the contact point. These forces couple with

the vertical inertia forces to create angular accelerations of the vehicle. If

the initial conditions and geometry of the vehicle are such that these accelera-

tions are large enough, the vehicle will topple over. If these forces are not

large enough, the vehicle will reach a maximum angle of tip and then oscillate

about some mean position until the friction forces bring it to a halt.

From this description of the vehicle motion it can be seen that for a

vehicle to be stable two conditions must be met. First, the vehicle must oscil-

late between two extreme values of 8; consequently, there must be two values of

@ at which the angular velocity vanishes:

-- =° (23a)

o (23b)

Second, the angular acceleration at these points must be such as to cause the

vehicle to return to the mean position; that is,

<0 (24a)

> o (24b)

in these expressions 8E+ is the value of the extreme on the positive side of

the mean position and 8E_ the value of the extreme on the negative side. The

angular limit of stability 8L is obtained when at one of these extremes the

angular acceleration attains a value of zero. Thus eL is given by

8



_(e_)--o (2%)

For each vehicle considered, an investigation must be made of the accelerations

at the extreme angular positions in order to determine which extreme yields the

limit of stability.

Equation (25a), upon substitution from equation (20), yields

f f joP(Tt) d_l _e eL P(TI) drl
e P(TI)d_]F_e° o,L 2 Q(a)

m + e e d0

from which the critical initial angular velocity _Oo_L

-_s8oLP(_)d_
e _o

=0

can be determined. Since

the equation for _o,L becomes

2 -_0 8°P(n)dn

_o,L = -e

In addition, as

(see eq. (22)),

From the definition of Q

satisfied only if either

_0 C_

Q(_)e d_ (26)
o

eL must satisfy equations (25a) and (25b) simultaneously

Q(eL)=0 (27)

in equation (ll) it can be seen that equation (27) is

hl _--- OO

or

The former condition is impossible when it is noted that

h' =d

(28)

(29)
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Consequently the latter (eq. (28)) must be one of the governing stability

requirements.

Note that when d and h are related as in equation (28), the resulting

force at the point of contact intersects the center of gravity of the body. For

most practical shapes of undersurfaces used as skid rockers there are three solu-

tions to equation (28) (that is, three positions at which eq. (28) is satisfied).

The intermediate solution is associated with a position that is always stable

while the extreme values are the possible limits of stability.

The attitude of a given vehicle at the limit of stability is obtained from

equation (28) and is a function of the coefficient of friction and the shape of

the body. Once this limiting angle is known, the critical initial angular

velocity _o,L is found as a function of initial contact angle @o from equa-

tion (26). The integrands appearing in this equation, however, are relatively

complex functions of the shape in terms of h, h', and h" and consequently

must be integrated numerically.

Initial Conditions

The initial conditions to be used in equation (26) are, of course, the con-

ditions just after contact is made with the landing surface. In many instances,

however, the values of the velocities which are known are those just prior to
contact. These values are related to the initial conditions (just after contact)

through impulse momentum equations:

f W "-_ N dt = _(x O - Vh) (30)

fO LXt N(_h - d)dt = I(_ O - V@) (3l)

f (N - W)dt = _( o + Vv) (32)

where Vh, Vv, and ¥@ are, respectively, the horizontal, vertical, and rota-

tional velocities Just prior to contact, and Xo, ho, and _o are the corre-

sponding initial velocities (just after contact). The integrals on the left of

equations (30) to (32) represent the impulse existing between the landing sur-

face and the vehicle. Their actual value depends on the resilient properties of

both the vehicle and the landing surfaces. However, the time interval _t,

representing the duration of the impulse, is assumed to be small enough so that

i0



£_t N(_h - d)dt = (_h - d)fO 2_t N dt
(33a)

f fW dt = W dt = 0 (3_b)

The initial vertical and rotational velocities are related through equa-

tion (5):

rio : h' (9o)_O o

With the use of equations (33b) and (34), equation (32) reduces to

(m)

= W , 8otto + VN dt (35)

The initial angular velocity mo, in terms of the velocities just prior to

contact, is obtained from equation (31) after making use of equations (33a) and
(35):

-  (0o  vv+
_o = (36)

I + _dC8o) - _ h(Bo_-Wh'(eO)g

A similar expression for Xo is obtained with the use of equations (30), (35),

and (36):

Vv + h'(eo)Ve
:_o = Vh - taI

I + Ed(8o) - B h(8o)] _h'(eo)g

(37)

Although the values of the impulse quantities depend on the resilient prop-

erties of the contacting surfaces, the initial velocities just after contact can

be obtained in terms of the velocities just prior to contact without knowing

these resilient properties.

Solution Neglecting Friction

As was previously stated, the integrals (see eq. (26)) that must be evalu-

ated to obtain the critical initial angular velocity are integrable only for

vehicles with specific simplified sliding surfaces. If the effects of friction

are neglected, however, the quantities inside the integral signs become exact

differentials; consequently, the integrals can be evaluated exactly for the
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general case. As the stability criterion is obtained in a simple closed-form
expression, the solution will be presented herein.

As seen from equation (28), the attitude at which instability occurs when
friction is neglected_ eL, is the position at which the center of gravity is
directly above the point of contact - that is_ the attitude for which d_ and
coasequently h', is zero. With the attitude of the vehicle at the point of
instability known, the critical initial angular velocity at which the instability
occurs, mo,L, is obtained from equation (26).

With the assumption that the friction coefficient _ is zero_ the expres-
sions for P and Q (eqs. (I0) and (ill) reduce to

and

p = 2wh,h" (38)
Ig + W(h'12

Q = -2Wgh' (39)
Ig + W(h')2

Note that P is now an exact derivative; therefore

where

f 1_g WCh)2]P dq = log e RTo
+

_o_ig+w_(o_2

(4o)

(41)

Also

e_0 _
P d_

By the use of equations (39) and (42), equation (261 can be integrated to

yield

_w_E_(_)-_(_o)] (43)
_O_ L =

Ig + W_'(8O)_ 2
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Consequently, all values of initial velocities before contact that result in
initial angular velocities _o (as calculated by eq. (36) with _ = 0) such that
_o2 > _o_L2 result in instability.

_/MERICALRESULTS

The purpose of this section is twofold: first, to illustrate the applica-
tion of the stability criterion in obtaining a stability boundary for a typical
sliding body, and second, to show the quantitative effects of various parameters
on the stability limit of a typical vehicle.

Description of Vehicle

The cross section of the vehicle whose stability is to be investigated in
this section is shownin figure 2. The shape was taken to be the sameas that of

Line of symmetry
- 6.36

J

Circle

Figure 2.- Cross section of conl'iguration C of reference 1.

configuration C used in the experimental investigation discussed in reference i.

The undersurface is symmetrical and consists of hyperbolic and circular segments
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having a common tangent at their junctions. The equations for the curves and the

expressions for h in the three segments of the undersurface shown in figure 2

are as follows:

For the hyperbola -22 < 8 < 227 :

-1.784 + _0.2305_ 2 + 1.7842Z

(c + 1.784)cos 8 - b sin 6 - 1.784Jcos28 - 4.3583 sin20h

For the circle at 8 > 221°:
3

z = 1.977- lli0.3335)2 - (_ 6.032) 2
¥

h = (c - 1.977)cos 8 - (b - 6.032)sin 8 + 0.3333

io
For the circle at 8 < - 22±:

3

z = 1.977 - _(0.3333) 2 - (e + 6.052) 2

h = (c - 1.977)cos 8 - (b + 6.032)sin 8 + 0.3333

The value of the ratio of the mass to the mass moment of inertia is

W_ = 0.0944 per sq ft
Ig

Application of Stability Criterion

The first step in obtaining a stability boundary is to calculate the

angular limit of stability 8L from equation (28) for the assumed value of the

coefficient of friction. As the vehicle in figure 2 is symmetrical, it is con-

venient to use the line of symmetry as the angular reference line. For this

symmetrical body_ with the center-of-gravity positions considered, the highest

of the three values of 8L from equation (28) yields the limit of stability.

Values of eL for various values of the coefficient of friction are shown in

figure 3. With the value of 8L known, _o,L (the critical initial angular

velocity after contact for which instability or tumbling occurs) is calculated

14



for a given contact angle eo from equa-

tion (26). The integrals appearing in

equation (26) are evaluated numerically

by use of trapezoidal integration with

2/3 ° intervals of e.

Any combination of sinking velocity

V v and of pitching velocity V e that

results in a value of _o 2 (as calculated

from eq. (36)) greater than _o,L 2 leads

to instability. As the experimental tech-

nique used in reference i does not permit

the vehicle to have a pitching velocity,

V 8 is assumed to be zero in the numerical

analysis used herein. Consequently, the

value of _o in the following discussion

will be a function only of the sinking

velocity V v and the attitude at impact

as given by 8o .

8L ,_

8O

40

2O

I I I I I I I I

0 .2 .4 .6 .8

t:

Figure 3.- Variation of angular limit of

stability e L with friction coeffi-

cient _.

Discussion of Results

Stability boundaries were calculated for the vehicle of figure 2 for a

range of values of sinking velocity, coefficient of friction, center-of-gravity

location, and contact attitude. The results of these calculations are shown in

figures 4 to 7-

In figure 4 the critical stability curve is shown as a function of sinking

velocity and contact angle for a vehicle with given center-of-gravity location

and coefficient of friction. For all combinations of contact angle and velocity

that fall below this curve the vehicle is stable. For values that fall above

this curve the vehicle tumbles. The distance between the two curves for a given

velocity represents the range of contact angles for which a stable landing is

possible, and is referred to as the region of safe touchdown.

The amount of attitude control necessary for the landing vehicle decreases

with an increase in the size of this region of safe touchdown. For example, at

a sinking velocity of 40 feet per second, the controls must be sufficiently

accurate to land the vehicle within a range of i0 ° of contact angle. At a veloc-

ity of 20 feet per second this range increases to 20° and thus less control is

necessary. For velocities below 20 feet per second there is a sudden increase in

the size of the safe touchdown region.

Note that for sinking velocities greater than 20 feet per second some kind

of attitude control is always necessary. As can be seen in figure 4, for veloc-

ities above 20 feet per second the only stable contact angles are positive; con-

sequently the landing of the vehicle must be controlled to assure such an angle.
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Even at lower sinking velocities the

desirability of some kind of attitude

control is indicated by the fact that the

range of positive safe contact angles is

considerably larger than the range of neg-

ative angles.

The influence of the coefficient of

friction and the height of the center-of-

gravity location (c in fig. 2) on the

region of safe touchdown is shown in fig-

ures 5 and 6, respectively. In figure 5

the critical stability curve of the
vehicle is shown as a function of the

contact angle and coefficient of friction

for a sinking velocity of i0 feet per sec-

ond and the same center-of-gravity loca-

tion used to obtain the results of fig-

ure 4. In figure 6 the stability curve

is shown as a function of the contact

angle and a dimensionless center-of-

gravity height $ = c/D, for the sinking

velocity of i0 feet per second (same as

used in fig. 5) and coefficient of fric-

tion of 0.40 (same as in fig. 4).

81.6

.4

,2 -

0 '

-80

I I

-40 0

O0,deg

/
Stable

E,,24

Vv , lO fl/sec

table

I I I I
40 80

Figure 5.- Influence of friction

coefficient _ on stability.

Vv, fl/sec

.8--

.6 --

.4 --

.2

0
- 80

roo F-

so_-

F

60

Unstable

40

/

20 ]_I Stable

o / I I I
-20 0

Unstoble

c=24

/_ :,40

\

2O

80 ,deg

40 60

Figure 4.- Influence of si1%king

velocity V v on stability.

Unstable

/

;/'" / /

-40

F = .40

v,.,o./._

ble

sm_ _

i l I \

0 4o
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Figure 6.- Influence of center-of-gravlty

height _ on stability.
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From figures 5 and 6 it can be seen that_ the region of safe touchdown

becomes larger with a decrease in both the coefficient of friction and the height

of the center of gravity. Furthermore, in both figures, for reasonable values of

and _ the range of positive safe contact angles is considerably larger than

the range of negative angles. This fact supports the desirability of attitude

control.

The influence of offsetting the center of gravity from the line of symmetry

is shown in figure 7. In this figure the critical stability curve is given as a

function of the contact angle and a dimensionless offset distance b = b/D. The

values of _ and _ are the same as in figure 4 and V v is equal to I0 feet

per second. This figure indicates that_ for a sufficiently high negative offset_

the range of negative safe contact angles might be made large enough to eliminate

the necessity for attitude control. This situation_ however_ would require that

the location of the center of gravity with respect to the motion of the vehicle

be made a design criterion.

For completeness the comparison between theory and experiment presented in

reference i is shown in figure 8. In this figure the curves show the calculated

stability boundaries as functions of center-of-gravity height and landing atti-

tude for three values of friction coefficient and a sinking velocity of lO feet

per second. The symbols show the results of the experimental investigation; the

open symbols represent stable landing attitudes while the closed symbols repre-

sent unstable ones. In general the agreement between theory and experiment is

good.

Figure 7.- Influence of center-of-gravity

offset _ on stability.

35

30

r I I I J I
_o Zo 30 40 $o 60

_o, dq

I I
1_-30 -20 -_o

Figure 8.- Comparison of theoretical results

with experimental results for configura-

tion C of reference i showing the influence

of center-of-gravity height _ on stabil-

ity. Vertical velocity V v = i0 ft/sec;

center-of-gravity offset _ = O.
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CONCLUDING REMARKS

A method of calculating a stability criterion for sliding bodies has been

developed. The method resulted from an exact solution of the nonlinear equations

of an arbitrary rigid body sliding on a surface in such a way that continuous

point contact is maintained. The range of values of initial contact angles which
result in stable motion is obtained from the solution of two equations, one of

which involves integrals that, for most cases, must be integrated numerically.

The method was used to obtain the stability boundaries of a vehicle used in

an experimental investigation. From the numerical results it was concluded that

although the region of safe touchdown could be increased by proper choice of

center-of-gravity location and sinking velocity, some attitude control for the

landing vehicle is desirable.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., January 15, 1963.
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